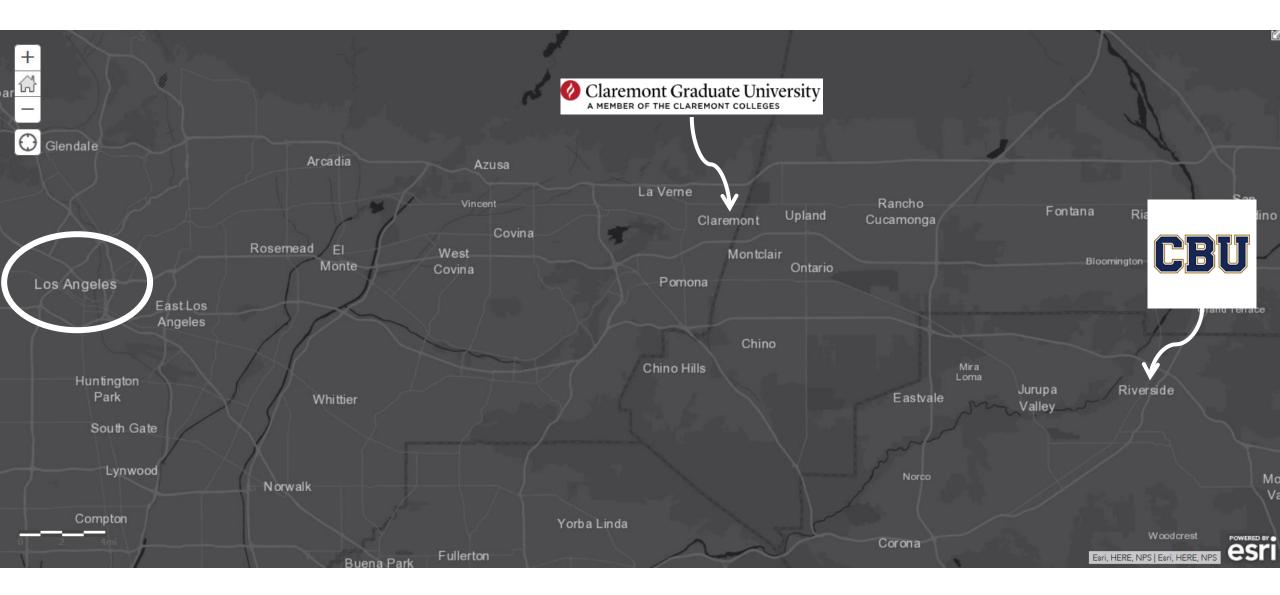
SIGGIS Demonstration: Intersection of Social Media Analytics and GeoAl

AMCIS 2020 11 August 2020

Social Media Analytics and GeoAl

Anthony Corso, Ph.D. Associate Professor of Computing, Software and Data Sciences California Baptist University Riverside, CA

> Brian Hilton, Ph.D. Clinical Full Professor Claremont Graduate University Director, Advanced GIS Lab Claremont, CA



Social Media Analytics and GeoAl

- Today, Social Media such as Twitter, Reddit, and Facebook, have become de facto global communication channels to disseminate news, entertainment, and one's self-revelations.
- This session will demonstrate Social Media preprocessing techniques, the use of Natural Language Processing to augment the data, and geospatial analysis of this data using GeoAl.

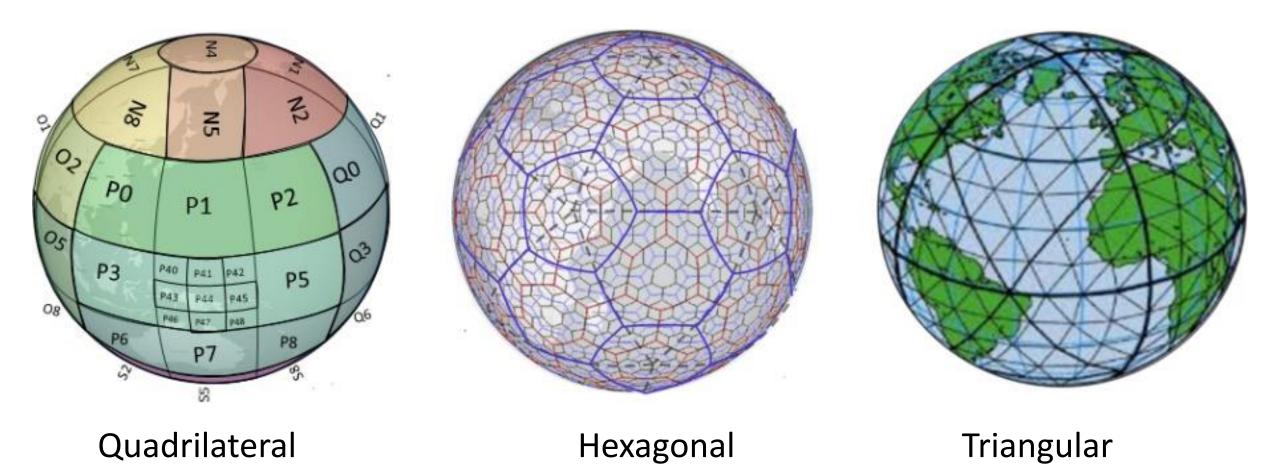
Social Media Analytics

• And now, Anthony...

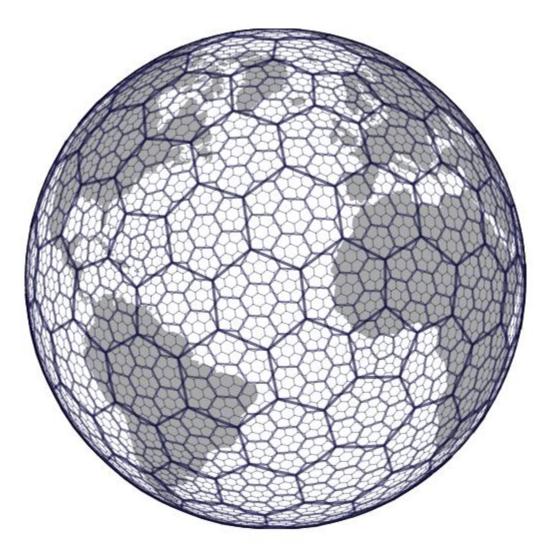
GeoAl

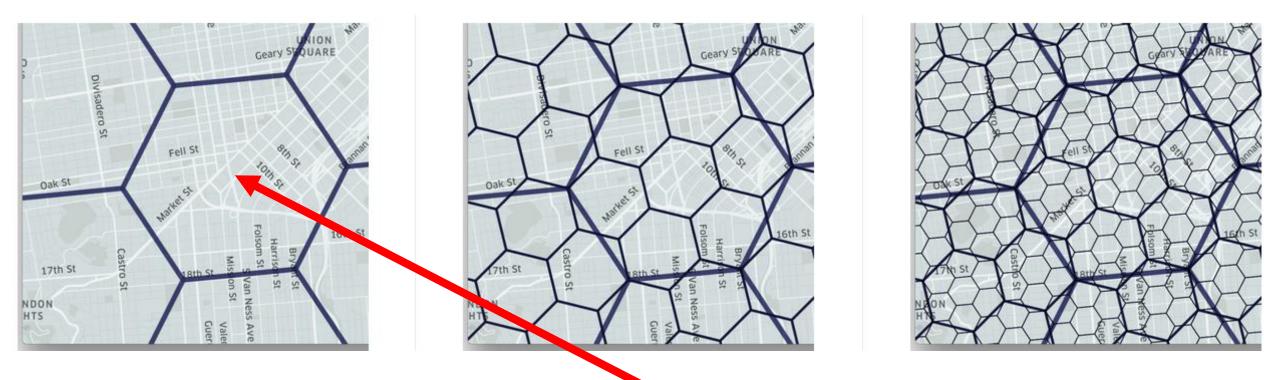
- Brief Discussion
 - Discrete Global Grid Systems
 - Types of Geospatial Data Analytics
 - Types of GeoAl
- Two Examples:
 - "Real-time", descriptive / diagnostic, spatial-temporal analysis of Tweets
 - Historic, predictive, spatial-temporal analysis of Tweets

- What is a Discrete Global Grid (DGG)?
- A Discrete Global Grid (DGG) consists of a set of regions that form a partition of the Earth's surface, where each region has a single point contained in the region associated with it. Each region/point combination is a called a *cell*. Depending on the application, data objects or values may be associated with the regions, points, or cells of a DGG. A Discrete Global Grid System (DGGS) is a series of discrete global grids, usually consisting of increasingly finer resolution grids (though the term **DGG** is often used interchangeably with the term **DGGS**).



- DGGS Resources
 - <u>Southern Terra Cognita Laboratory</u>
 - OGC Specification
 - Uber H3





Each hexagon has a unique index value at a specific resolution At this location, at resolution 8, the hexID = 8829a1d719fffff

At this location, at resolution 9, the hexID = 8929a1d7193ffff The three points here could be "tagged" with this value

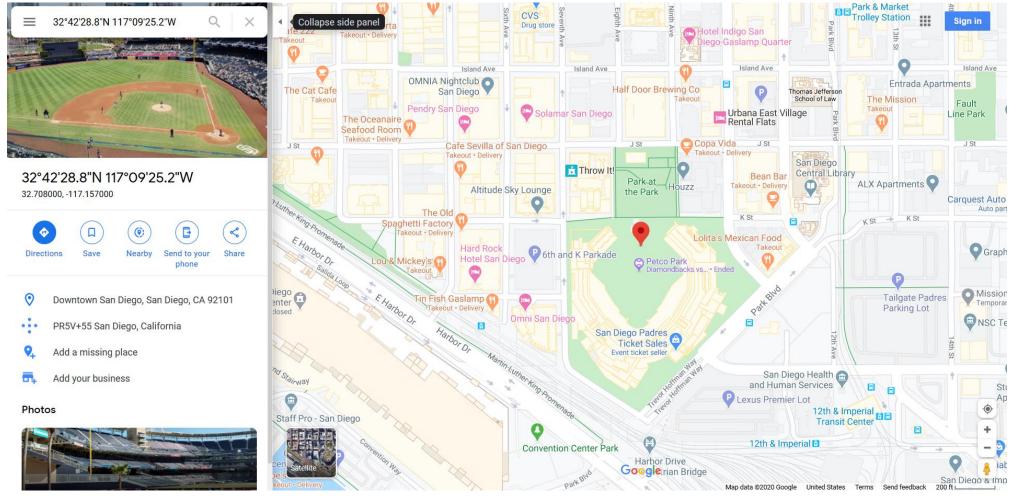
H3 Resolution	Average Hexagon Area (km ²)	Average Hexagon Edge Length (km)	Number of unique indexes
0	4,250,546.8477000	1,107.712591000	122
1	607,220.9782429	418.676005500	842
2	86,745.8540347	158.244655800	5,882
3	12,392.2648621	59.810857940	41,162
4	1,770.3235517	22.606379400	288,122
5	252.9033645	8.544408276	2,016,842
6	36.1290521	3.229482772	14,117,882
7	5.1612932	1.220629759	98,825,162
8	0.7373276	0.461354684	691,776,122
9	0.1053325	0.174375668	4,842,432,842
10	0.0150475	0.065907807	33,897,029,882
11	0.0021496	0.024910561	237,279,209,162
12	0.0003071	0.009415526	1,660,954,464,122
13	0.0000439	0.003559893	11,626,681,248,842
14	0.0000063	0.001348575	81,386,768,741,882
15	0.0000009	0.000509713	569,707,381,193,162

- What do those resolutions mean?
- For example:

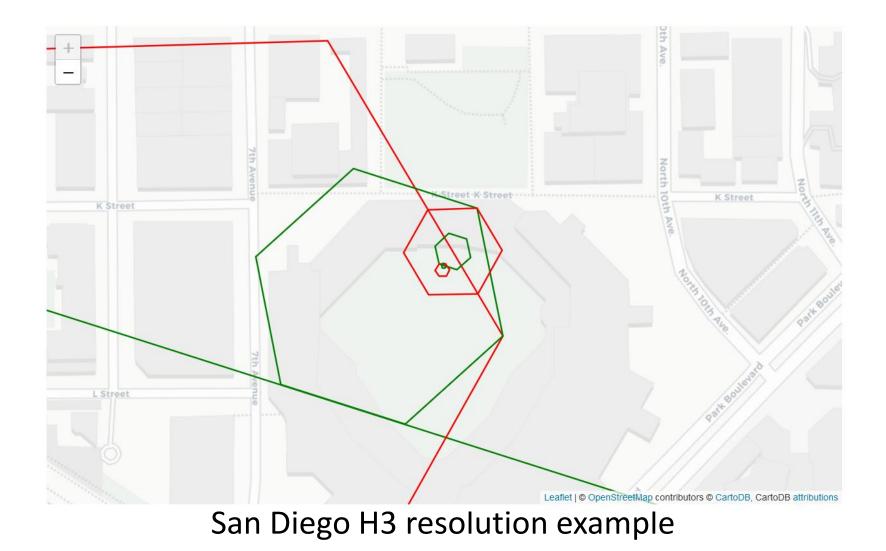
.

- Resolution 7: City District
- Resolution 8: City Neighborhood
- Resolution 9: 4-8 city blocks
- Resolution 10: A city block or less
- • Decelution 15. Les
- Resolution 15: Less than one square meter

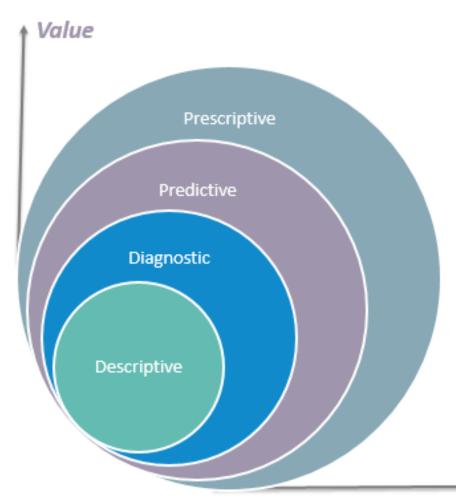
- H3 San Diego H3 resolution example Python notebook
- Link



Example location - Petco Park (San Diego, CA) Google Maps (longitude = -117.157, latitude = 32.708)



4 types of Data Analytics



What is the data telling you?

Descriptive: What's happening in my business?

- · Comprehensive, accurate and live data
- Effective visualisation

Diagnostic: Why is it happening?

- Ability to drill down to the root-cause
- Ability to isolate all confounding information

Predictive: What's likely to happen?

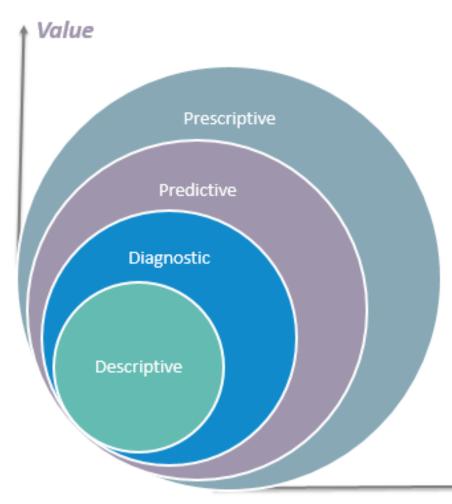
- · Business strategies have remained fairly consistent over time
- Historical patterns being used to predict specific outcomes using algorithms
- Decisions are automated using algorithms and technology

Prescriptive: What do I need to do?

- Recommended actions and strategies based on champion / challenger testing strategy outcomes
- Applying advanced analytical techniques to make specific recommendations

Complexity

4 types of Data Analytics



What is the data telling you?

Descriptive: What's happening in my business?

- Comprehensive, accurate and live data
- Effective visualisation

Diagnostic: Why is it happening?

- Ability to drill down to the root-cause
- Ability to isolate all confounding information

Predictive: What's likely to happen?

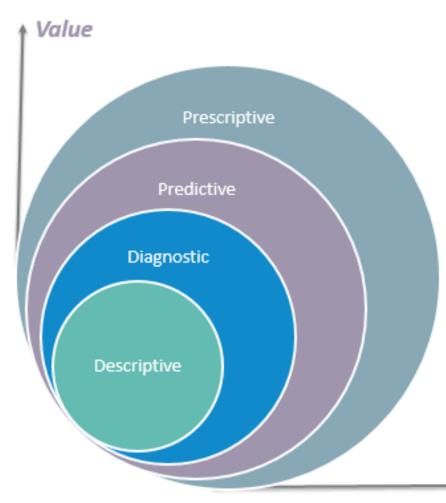
- Business strategies have remained fairly consistent over time
- Historical patterns being used to predict specific outcomes using algorithms
- Decisions are automated using algorithms and technology

Prescriptive: What do I need to do?

- Recommended actions and strategies based on champion / challenger testing strategy outcomes
- Applying advanced analytical techniques to make specific recommendations

Complexity

4 types of Data Analytics



What is the data telling you?

Descriptive: What's happening in my business?

- Comprehensive, accurate and live data
- Effective visualisation

Diagnostic: Why is it happening?

- Ability to drill down to the root-cause
- Ability to isolate all confounding information

Predictive: What's likely to happen?

- Business strategies have remained fairly consistent over time
- Historical patterns being used to predict specific outcomes using algorithms
- Decisions are automated using algorithms and technology

Prescriptive: What do I need to do?

- Recommended actions and strategies based on champion / challenger testing strategy outcomes
- Applying advanced analytical techniques to make specific recommendations

Complexity

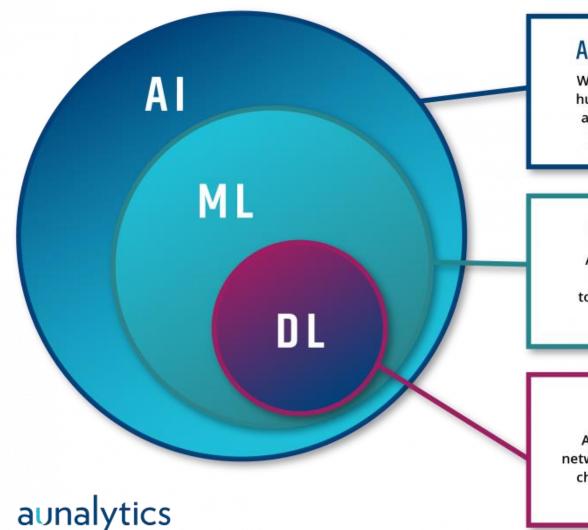
What is the data telling you?

Principa

www.principa.co.za

4 types of Data Analytics

Types of GeoAl



Artificial Intelligence

When a machine is able to mimic human intelligence by having the ability to predict, classify, learn, plan, reason and/or percieve.

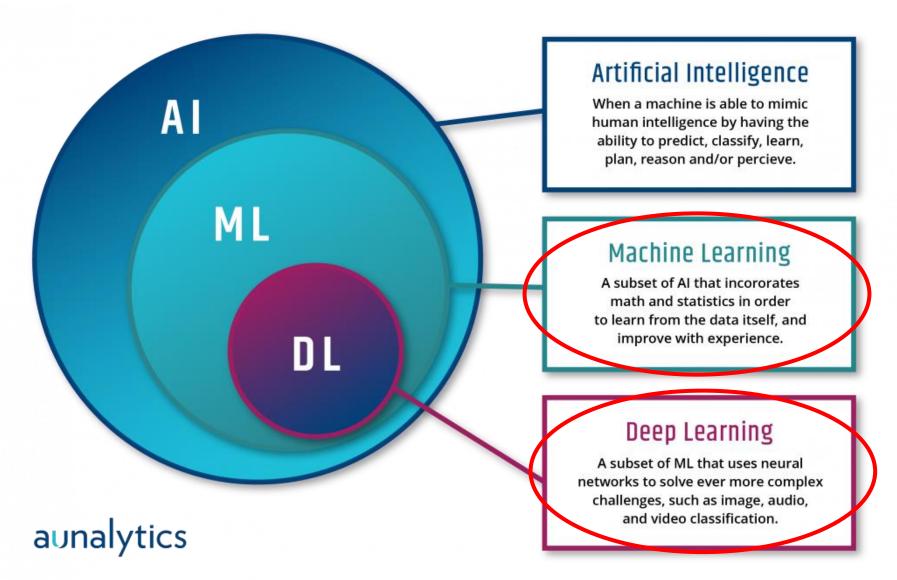
Machine Learning

A subset of AI that incororates math and statistics in order to learn from the data itself, and improve with experience.

Deep Learning

A subset of ML that uses neural networks to solve ever more complex challenges, such as image, audio, and video classification.

Types of GeoAl



Classification

The process of deciding to which category an object should be assigned based on a training dataset

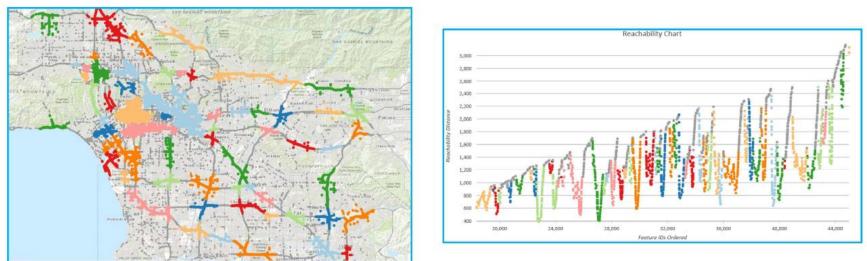
Use Case: Classify impervious surfaces to help effectively prepare for storm and flood events based on the latest high-resolution imagery

In ArcGIS: Maximum Likelihood Classification, Random Trees, Support Vector Machine, Forest-based Classification and Regression

Clustering

The grouping of observations based on similarities of values or locations

Use Case: Given the nearly 50,000 reports of traffic between 5pm and 6pm in Los Angeles (from Traffic Alerts by Waze), where are traffic zones that can be used to elicit feedback from current drivers in the area?

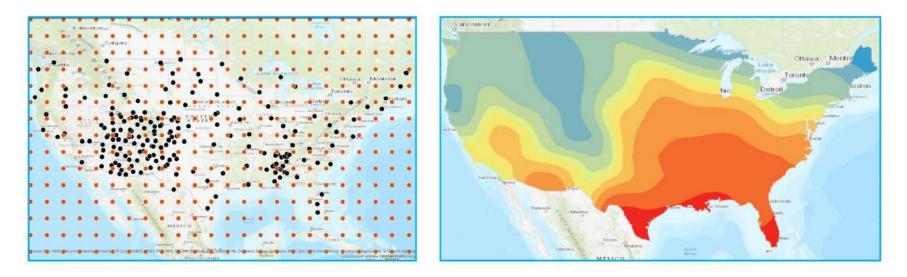


In ArcGIS: Spatially Constrained Multivariate Clustering, Multivariate Clustering, Density-based Clustering, Image Segmentation, Hot Spot Analysis, Cluster and Outlier Analysis, Space Time Pattern Mining

Prediction

Using the known to estimate the unknown

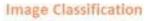
Use Case: Accurately predict impacts of climate change on local temperature using global climate model data



In ArcGIS: Empirical Bayesian Kriging, Areal Interpolation, EBK Regression Prediction, Ordinary Least Squares Regression and Exploratory Regression, Geographically Weighted Regression, Generalized Linear Regression, Forest-based Classification and Regression

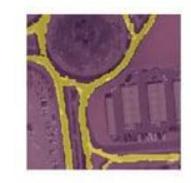
GeoAl - Deep Learning

Deep Learning: Computer Vision Use Cases



Object Detection

Semantic Segmentation



Instance Segmentation

GeoAl - Deep Learning

Aerial image Ground-truth labels

Predictions (after 1 epoch)

Predictions (after 250 epochs)

Object Detection - Swimming Pools

Classification - Land Cover Type

Types of GeoAl

- GeoAl Resources
 - Medium website: GeoAI thoughts about where AI and GIS intersect
 - Spatial Analysis and Data Science at the 2020 Esri User Conference
 - GeoAI: Vertical Use Cases using AI with ArcGIS
 - Spatial Analysis and Data Science
 - Geographic Data Science Lab
 - Geographic Information Systems and Science
 - Geographic Data Science with PySAL and the PyData Stack
 - Geocomputation with R

- Study Area San Diego, CA
- Spatial Resolution H3 resolution 7, 8, and 9
- Time Period late December 2019 (hence, "real-time" in quotes)
- Data Sets
 - Twitter
 - <u>San Diego Calls for Service</u> (public safety data)

- Workflow (in brief)
 - Tag data (Tweets and Calls for Service) with H3 index values
 - Link Tweets and Calls for Service using H3 index
- Purpose
 - Proof-of-concept linking live data
 - Visualize data using various techniques
 - Examine data in an exploratory / drill-down approach

Tweets

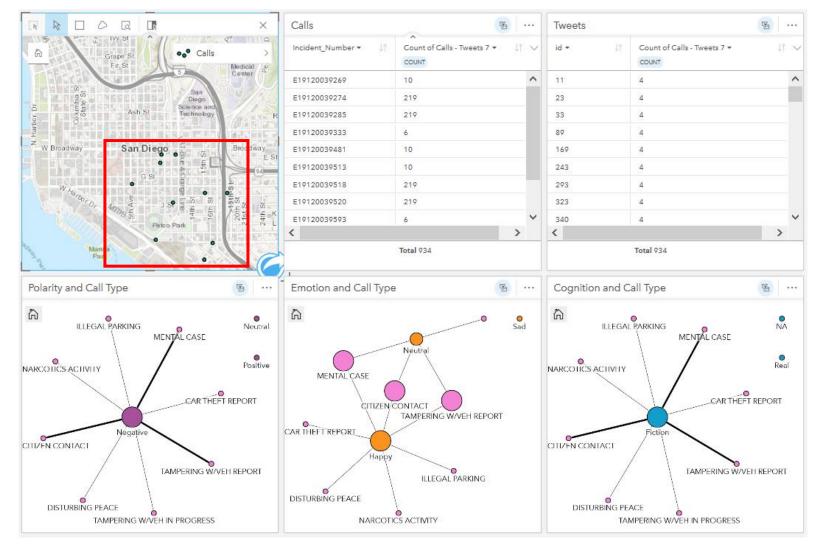
creat	ted_a	Polarity	Emotion	Cognition	hex_0	hex_1	hex_2	hex_3	hex_4	hex_5	hex_6	hex_7	hex_8	hex_9
Tue [Dec 2	4 Neutral	Neutral	NA	8029ffffff	81487fffff	8229a7fff	18329a4fff	8429a41ff	8529a413f	8629a410	8729a411	8829a411	8929a411
Tue [Dec 2	4 Positive	Нарру	NA	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a413f	8629a410	8729a411	8829a411	8929a411
Tue [Dec 2	Positive	Нарру	Real	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a413f	8629a402	8729a402	8829a4024	8929a402
Tue [Dec 2	Positive	Sad	NA	8029ffffff	81487fffff	8229a7fff	18329a4fff	8429a41ff	8529a413f	8629a402	8729a402	8829a4024	8929a402
Tue [Dec 2	4 Negative	Neutral	Fiction	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a403f	8629a402	8729a402	8829a402	8929a402
Tue [Dec 2	4 Negative	Sad	NA	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a413f	8629a411	8729a411	8829a411	8929a411
Tue [Dec 2	4 Neutral	Нарру	Fiction	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a413f	8629a411	8729a411	8829a411	8929a411
Tue [Dec 2	Positive	Sad	NA	8029ffffff	81487fffff	8229a7fff	8329a4fff	8429a41ff	8529a413f	8629a411	8729a411	8829a411	8929a411
Mad	Deel	Noutral	Cod	Bool	0020444444	01 10 74444	0110-7444	0220-4444	0420-41ff	0520-4024	0610-401	0720-402	0010-401	0020-402

Calls for Service

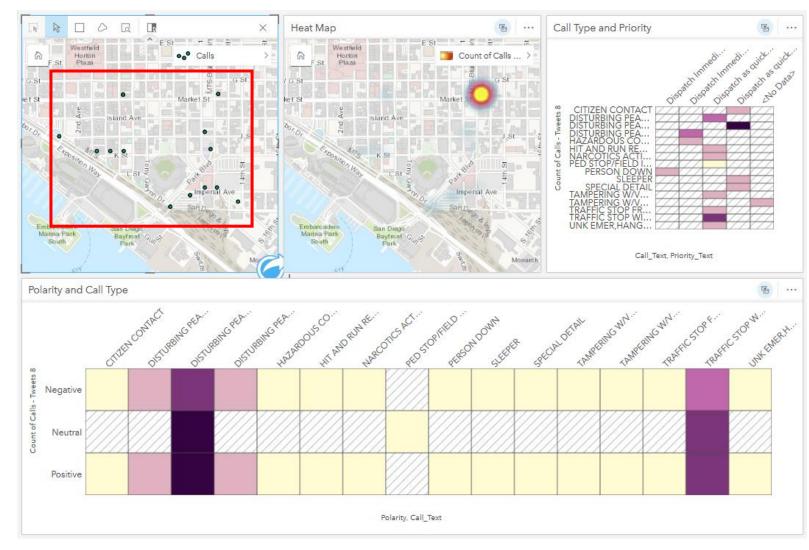
call_type_	description	priority_1 priority_text	dispo_coc	description_1	date_time_Converted	lat	lon	hex_10	hex_9	hex_8	hex_7
1151	PED STOP/FIELD IN	2 Dispatch as quickly as possibl	CAN	CANCEL	12/23/2019 0:04	32.74872	-117.106	8a29a41a	8929a41aa	8829a41a	8729a41aa
1151	PED STOP/FIELD IN	2 Dispatch as quickly as possibl	К	NO REPORT REQUIRED	12/23/2019 0:10	32.73822	-117.11	8a29a41a	8929a41aa	8829a41a	8729a41aa
459A	BURGLARY ALARM	2 Dispatch as quickly as possibl	К	NO REPORT REQUIRED	12/23/2019 0:12	32.74855	-117.054	8a29a418	(8929a4180	8829a418	8729a4180
SLEEPER	SLEEPER	3 Dispatch as quickly as possibl	U	UNFOUNDED	12/23/2019 0:13	32.75441	-117.248	8a29a402	(8929a4026	8829a402	8729a4026
MPSSTP	TRAFFIC STOP FRC	2 Dispatch as quickly as possibl	0	OTHER	12/23/2019 0:13	32.97904	-117.084	8a29a409	8929a4099	8829a409	8729a408a1
1151	PED STOP/FIELD IN	2 Dispatch as quickly as possibl	К	NO REPORT REQUIRED	12/23/2019 0:15	32.77491	-117.206	8a29a403	8929a4035	8829a403	8729a40351
NARC	NARCOTICS ACTIV	2 Dispatch as quickly as possibl	К	NO REPORT REQUIRED	12/23/2019 0:15	32.75344	-117.248	8a29a402	8929a4026	8829a402	8729a40261
1153	SECURITY CHECK	2 Dispatch as quickly as possibl	R	REPORT	12/23/2019 0:17	32.82044	-117.179	8a29a401	8929a401	8829a401	8729a4015
459	BURGLARY IN PRC	1 Dispatch Immediately - seriou	К	NO REPORT REQUIRED	12/23/2019 0:21	32.71397	-117.154	8a29a41a	8929a41a	8829a41a	8729a41adi

	···	Calls	12		Tweets		···
CoceanSide	Calls >	Incident_Number •	Count of Calls - Tweets 7 -		id - ↓↑	Count of Calls - Tweets 7 -	1ţ.
142.14	San Diego	E19120039265	4	^	11	8	
	0500 H	E19120039266	9		23	8	
° 8 °	Carl March	E19120039268	1		33	8	
Miramar Miramar	Kumeyoav	E19120039269	10		89	8	
	Cajon	E19120039270	9		102	1	
San Dega	Clesslar Nationa Forest	E19120039272	4		169	8	
-Chula Vi	sta All	E19120039274	219		209	1	
	A THE REAL OF	E19120039275	3		243	8	
905		E19120039276	5	~	250	10	•
Tijuana	() (maisful ag	C		>	<		>
Playas d			Total 2,622			Total 2,622	
Polarity and Call Type 🛛 🔂 \cdots		Emotion and Call Type 🔹 …			Cognition and C	all Type	5.
A CARJAC		CHECK THEWELFARE			â		

"Real-time", descriptive / diagnostic, spatial-temporal analysis of Tweets



"Real-time", descriptive / diagnostic, spatial-temporal analysis of Tweets



- Study Area San Diego, CA
- Spatial Resolution H3 resolution 9
- Time Period late December 2019
- Data Sets
 - Twitter
 - <u>CalEnviroScreen 3.0</u> (CES3) Indicators in CalEnviroScreen are measures of either environmental conditions, in the case of pollution burden indicators, or health and vulnerability factors for population characteristics indicators.

- Workflow (in brief)
 - Tag data (Tweets) with H3 index values
 - H3 San Diego H3 hexagons example Python notebook
 - ArcGIS San Diego tabulate intersect example Python notebook
 - Append Tweets data set with CES3 Indicators using H3 index
- Purpose
 - Examine relationships between "NLP-ed" Tweets and CES3 data
 - Predict Emotion (Happy, Neutral, Sad) based on CES3 Population Characteristics

CES3 Indicators:

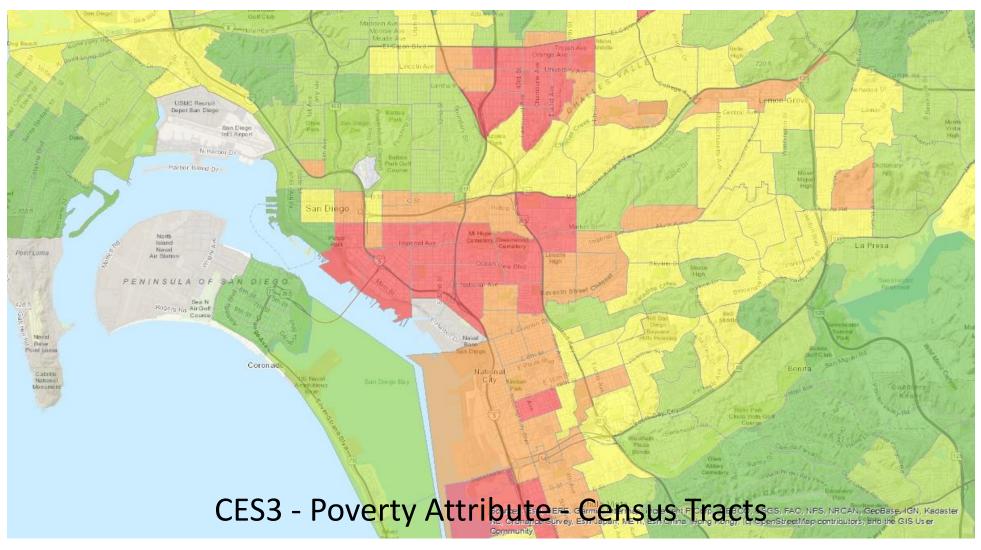
Pollution Exposures Environmental Effects

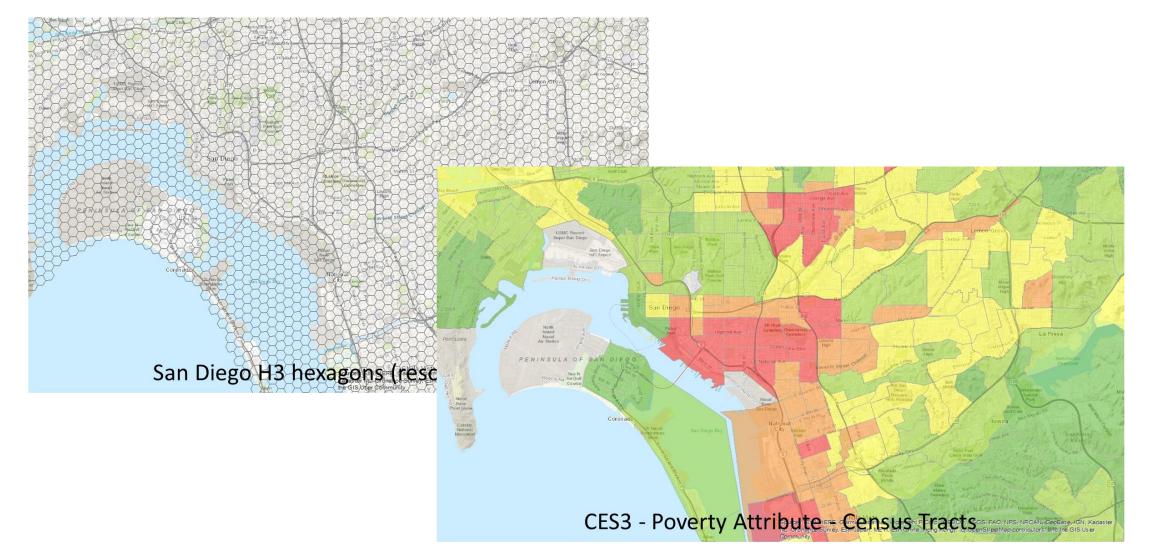
Pollution Characteristics

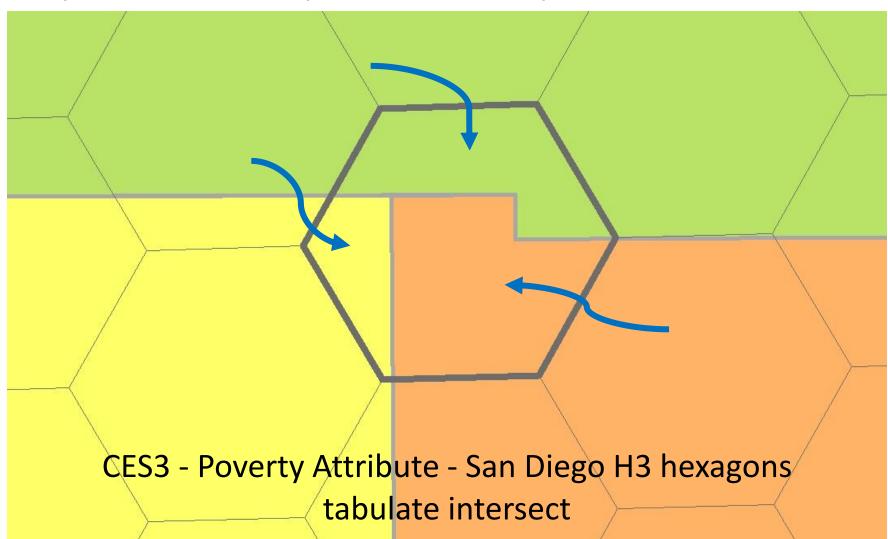
Sensitive Populations Socioeconomic Factors

Pollution Burden	Population Characteristics				
Exposures	Sensitive Populations				
Ozone PM2.5 Diesel PM	Asthma				
Pesticide Use Traffic	Cardiovascular Disease				
Drinking Water Toxic Releases Contaminants from Facilities	Low Birth-Weight Infants				
Environmental Effects	Socioeconomic Factors				
Solid Waste Sites Cleanup Sites	Poverty Unemployment				
and Facilities					
Groundwater Impaired Water Threats Bodies	Educational Linguistic Attainment Isolation				
Hazardous Waste	Housing Burdened				
Generators and Facilities	Low Income Households				

- H3 San Diego H3 hexagons example Python notebook
- Link







- ArcGIS San Diego tabulate intersect example Python notebook
- Link

In [4]: pd.set_option('max_columns', None)
pd.set_option("max_rows", None)
df = pd.read_csv('gis_analysis\\h3_san_diego_7_areas.csv')
df

Out[4]:

	OBJECTID	hex_id	ozone	pm	diesel	drink	pest	RSElhaz	traffic	cleanups	gwthreats	haz	iwb	swis	asthma	cvd	lbw	edu	housingB
0	1	8729a0902ffffff	0.046	8.28	2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2
1	2	8729a0906ffffff	0.046	8.28	2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2
2	3	8729a0910ffffff	0.046	8.28	2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2
3	4	8729a0910ffffff	0 053	7.44	2.42	907.13	3.031	129.83	682.96	12.00	3.00	0.15	7	0.2	30.39	6.63	4.14	10.6	11.1
4	5	8729a0911ffffff	0.046	8.28	2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2
3037	3038	8729a6b6dffffff	0.048	8.70	0.53	624.70	6.274	11.45	199.96	0.00	0.00	0.00	9	0.0	21.81	5.82	4.96	14.3	14.0
3038	3039	8729a6b6dffffff	0.055	7.38	0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2
3039	3040	8729a6b6effffff	0.055	7.38	0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2
3040	3041	8729a6b71ffffff	0.055	7.38	0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2
3041	3042	8729a6b75ffffff	0.055	7.38	0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2

3042 rows × 24 columns

In [4]: pd.set_option('max_columns', None)
pd.set_option("max_rows", None)
df = pd.read_csv('gis_analysis\\h3_san_diego_7_areas.csv')
df

Out[4]:

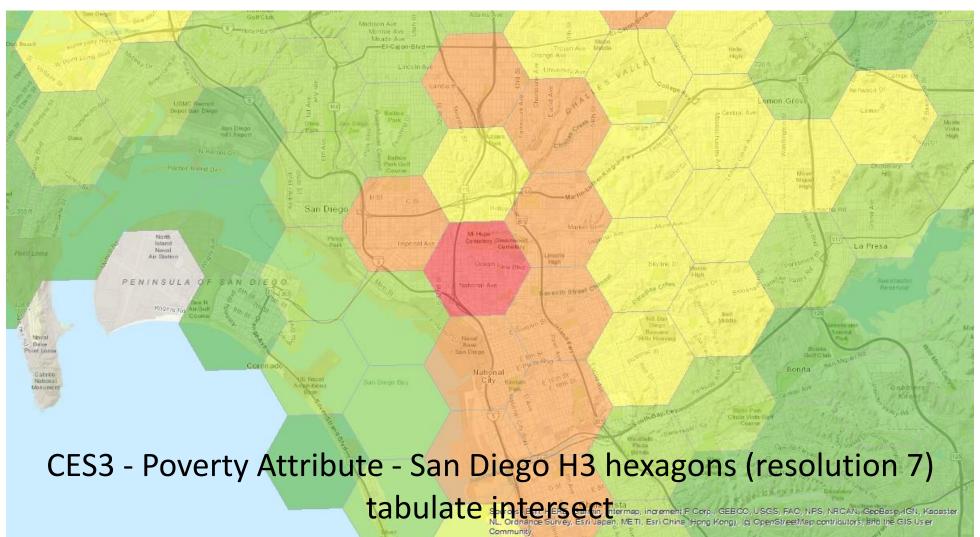
əsel	drink	pest	RSElhaz	traffic	cleanups	gwthreats	haz	iwb	swis	asthma	cvd	lbw	edu	housingB	ling	pov	unemp	AREA	PERCENTAGE
2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2	0.2	49.4	15.5	8.383652e+06	99.999999
2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2	0.2	49.4	15.5	8.380721e+06	100.00000
2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2	0.2	49.4	15.5	7.104579e+96	84.715167
2.42	907.13	3.031	129.83	682.96	12.00	3.00	0.15	7	0.2	30.39	6.63	4.14	10.6	11.1	3.1	31.3	4.5	1.281852e+06	15.284833
2.71	554.17	13.408	108.40	2394.83	24.75	199.75	8.10	11	9.5	22.72	4.48	3.97	1.2	36.2	0.2	49.4	15.5	8.319281e+06	99.198364
0.53	624.70	6.274	11.45	199.96	0.00	0.00	0.00	9	0.0	21.81	5.82	4.96	14.3	14.0	3.0	38.9	9.0	8.407951e+04	1.002178
0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2	2.4	47.0	18.5	8.305597e+06	98.997823
0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2	2.4	47.0	18.5	8.392271e+06	100.00000
0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2	2.4	47.0	18.5	8.394663e+06	100.00000
0.17	1008.75	0.419	6.67	89.93	0.00	8.00	0.00	11	12.4	21.73	4.71	3.16	12.2	11.2	2.4	47.0	18.5	8.391717e+06	99.99999

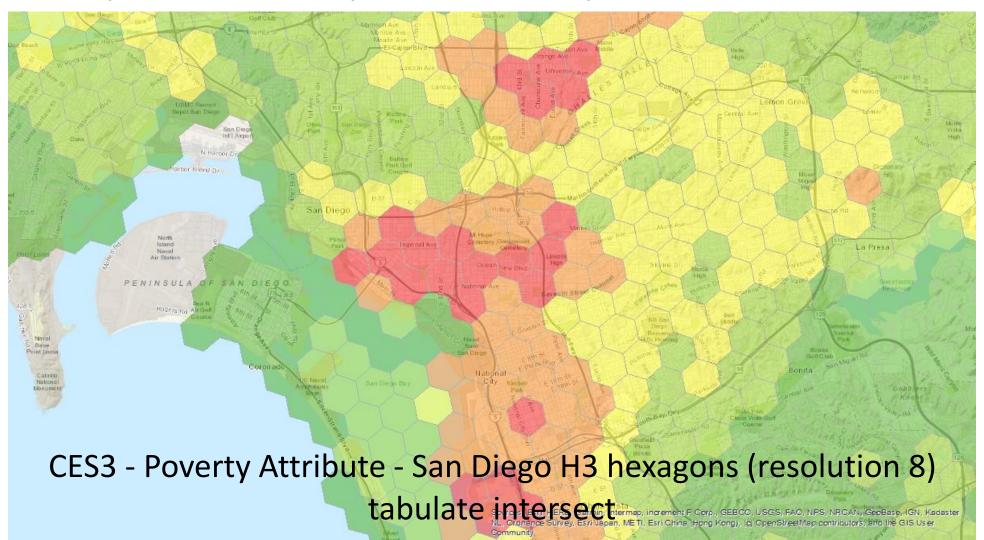
y, SUM(PERCENTAGE1*swis) as Solid_Waste_Sites, SUM(PERCENTAGE1*asthma) as Asthma, SUM(PERCENTAGE1*cvd) as Cardiovascula r_Disease, SUM(PERCENTAGE1*lbw) as Low_Birth_Weight, SUM(PERCENTAGE1*edu) as Educational_Attainment, SUM(PERCENTAGE1*ho usingB) as Housing_Burden, SUM(PERCENTAGE1*ling) as Linguistic_Isolation, SUM(PERCENTAGE1*pov) as Poverty, SUM(PERCENTA GE1*unemp) as Unemployment FROM df_sql GROUP BY hex_id;") df sql2

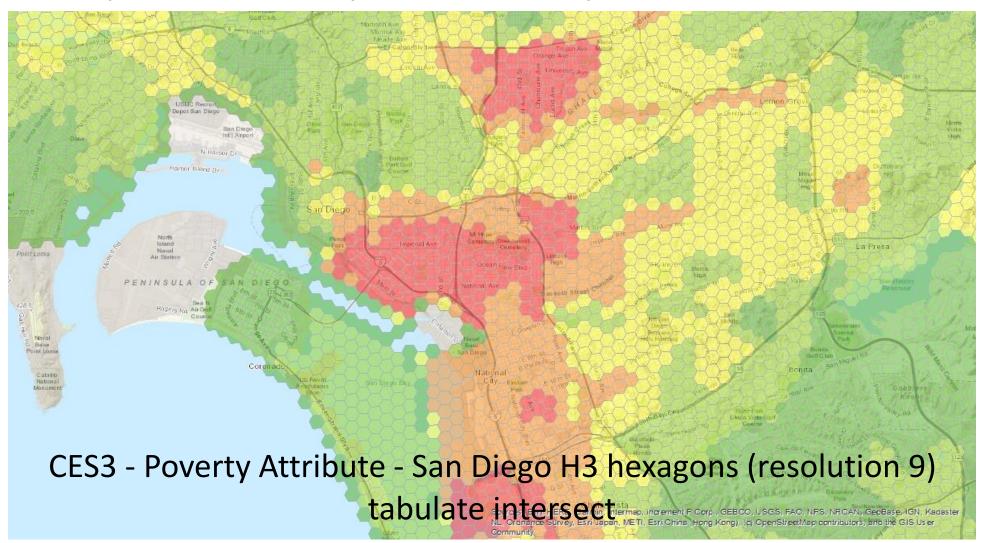
Out[6]:

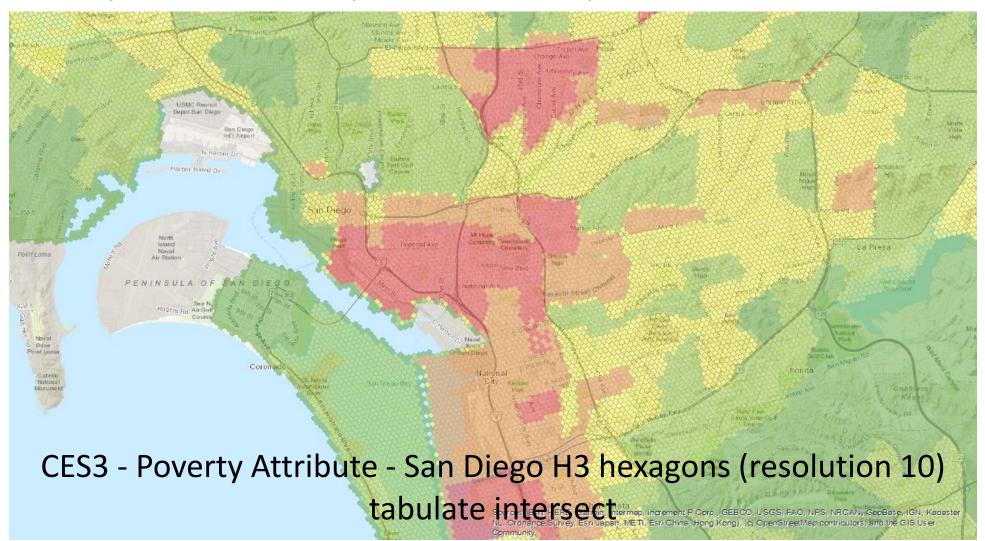
	hex_id	Ozone	PM_2_5	Diesel_PM	Drinking_Water	Pesticide_Use	Toxic_Releases	Traffic	Cleanup_Sites	Groundwater_Threats	Hazardous_
0	8729a0902ffffff	0.046000	8.280000	2.710000	554.169997	13.408000	108.399999	2394.829988	24.750000	199.749999	8.1
1	8729a0906ffffff	0.046000	8.280000	2.710000	554.170001	13.408000	108.400000	2394.830005	24.750000	199.750000	8.1
2	8729a0910ffffff	0.04/070	8.151607	2.665674	608.119343	11.821893	111.675539	2133.173519	22.801184	169.677090	6.8
3	8729a0911ffffff	0.046056	8.273266	2.707675	556.999438	13.324814	108.571788	2381.107022	24.647791	198.172781	8.0
4	8729a0912ffffff	0.051698	7.596285	2.473956	841.460554	4.961677	125.842873	1001.459408	14.372182	39.606027	1.6
963	8729a6b6cffffff	0.055000	7.380000	0.170000	1008.750011	0.419000	6.670000	89.930001	0.000000	8.000000	0.0
964	8729a6b6dffffff	0.054930	7.393229	0.173608	1004.901151	0.477678	6.717904	91.032698	0.000000	7.919826	0.0
965	8729a6b6effffff	0.055000	7.380000	0.170000	1008.749997	0.419000	6.670000	89.930000	0.000000	8.000000	0.0
966	8729a6b71ffffff	0.055000	7.380000	0.170000	1008.750028	0.419000	6.670000	89.930002	0.000000	8.000000	0.0
967	8729a6b75ffffff	0.055000	7.380000	0.170000	1008.749991	0.419000	6.670000	89.929999	0.000000	8.000000	0.0

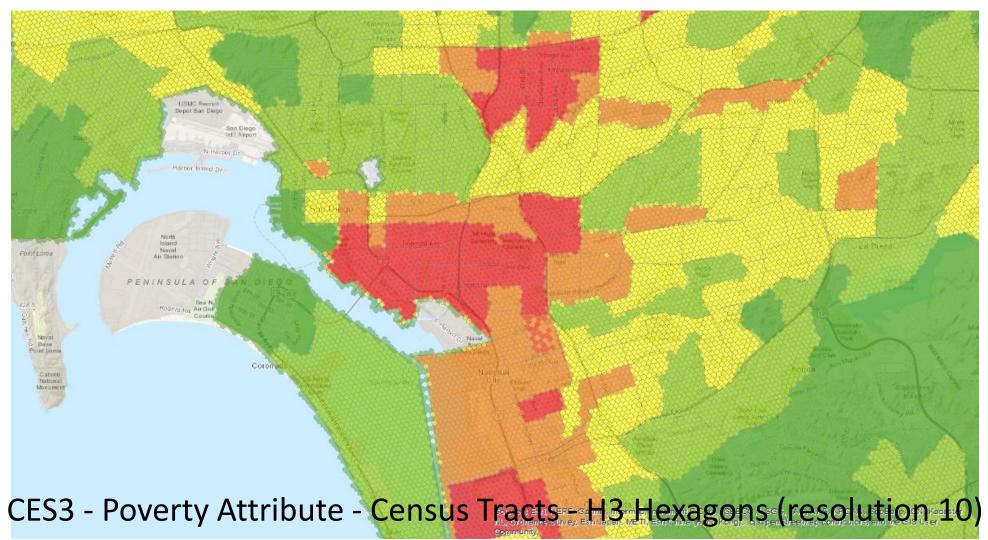
968 rows × 21 columns

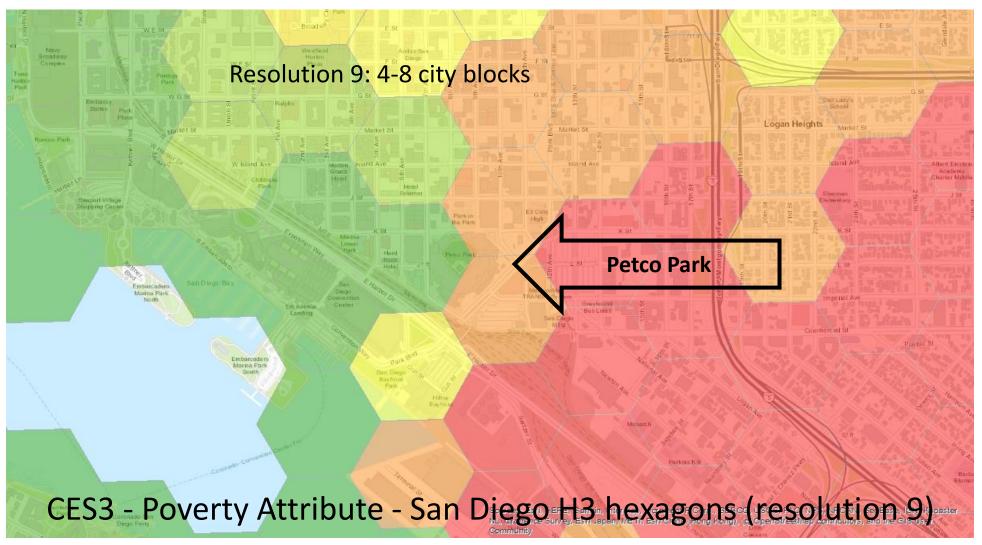




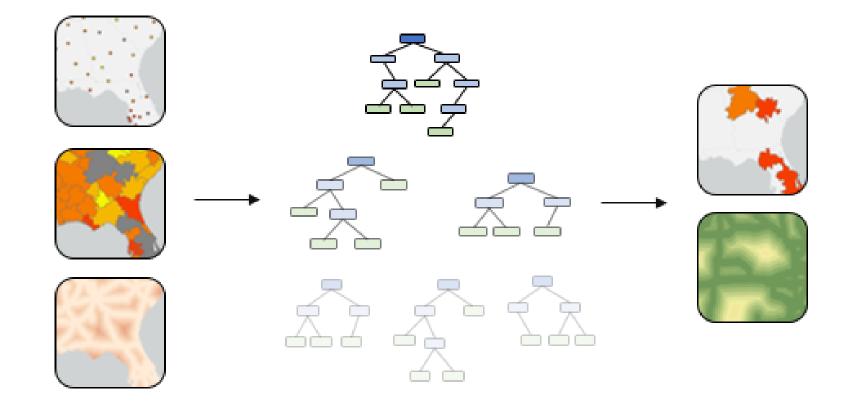






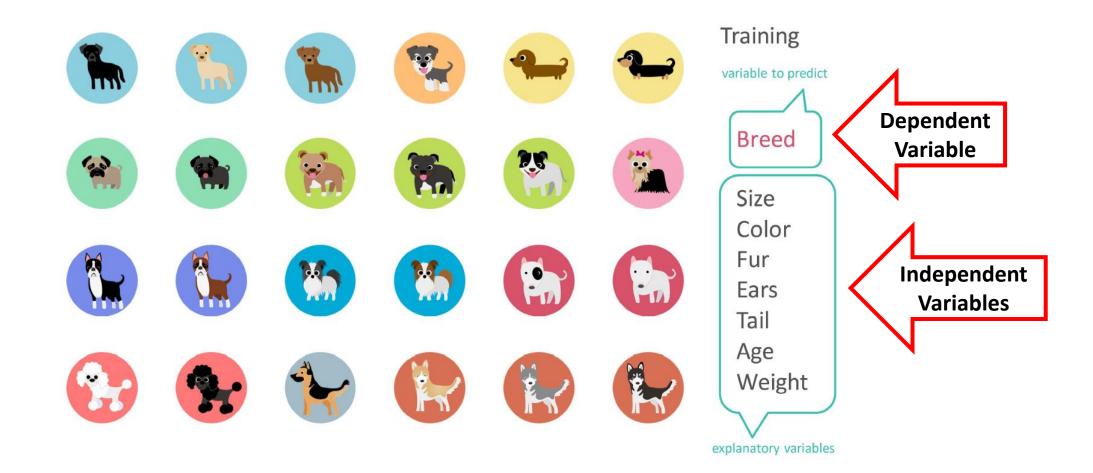


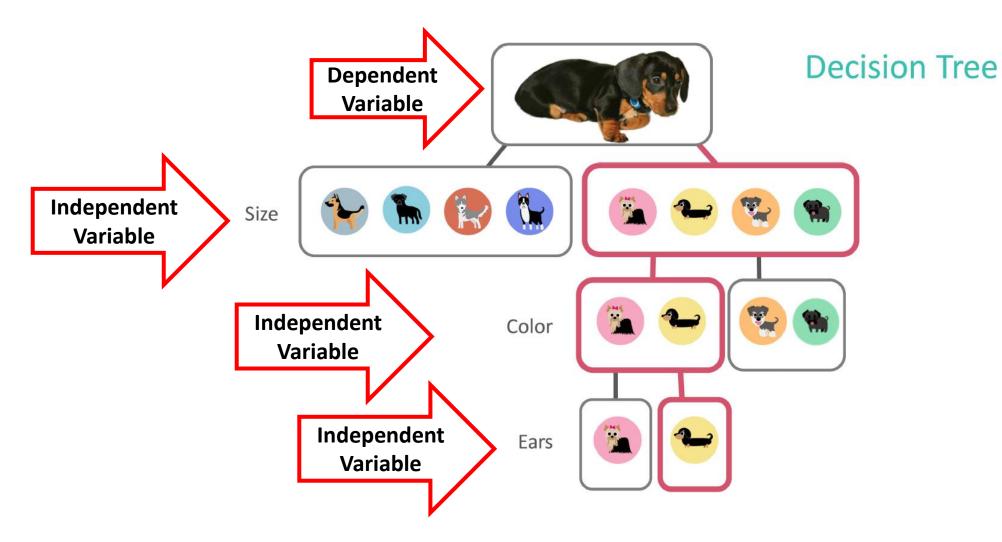
• Forest-based Classification and Regression

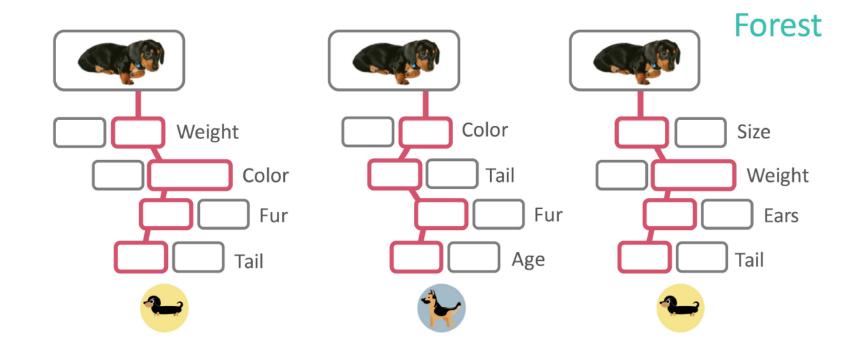


- Forest-based Classification and Regression
- Many **decision trees** are created, called an ensemble or a forest, that are used for **prediction**.
- Each tree generates its own prediction and is used as part of a voting scheme to make final predictions.
- Final predictions are not based on any single tree but rather on the entire forest.

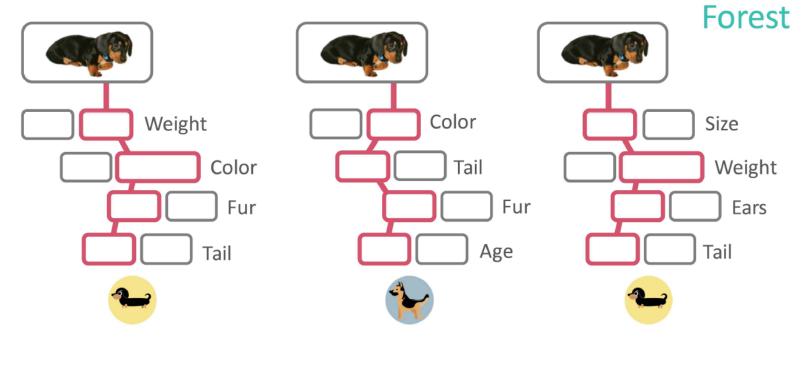
- Forest-based Classification and Regression
- The use of the entire forest helps **avoid overfitting the model** to the training dataset,
- as does the use of both a random subset of the training data and a random subset of explanatory variables in each tree that constitutes the forest.







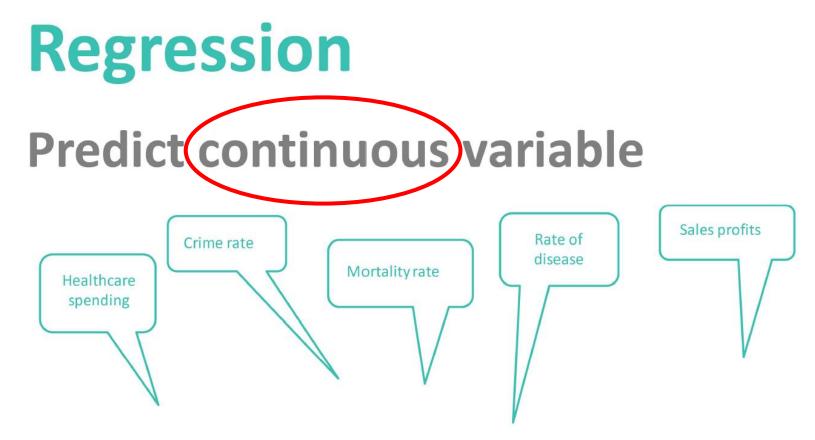
Random subset of data and variables used in each tree



Majority vote wins () = ()

• Forest-based Classification and Regression

• Forest-based Classification and Regression



- Forest-based Classification and Regression Model Parameters
 - Predict Emotion (Happy, Neutral, Sad) based on CES3 Population Characteristics
 - 90 training / 10 validation split, 100 trees, 100 iterations

Model 1 Variables	Model 2 Variables	Model 3 Variables
Unemployment	Unemployment	Poverty
Poverty	Poverty	Asthma
Linguistic Isolation	Housing Burden	Cardiovascular Disease
Housing Burden		
Educational Attainment		

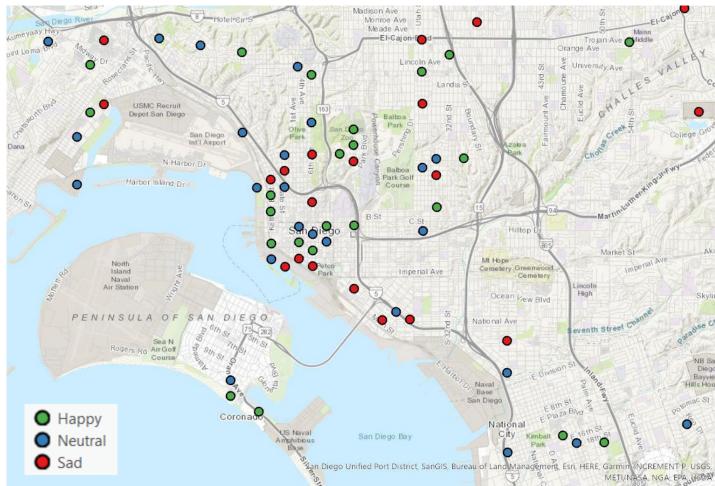
• Forest-based Classification and Regression - Results

		Mode	el 1		Mode	el 2				
Emotion	Actual	Predicted	%_Correct	Actual	Predicted	%_Correct	Actual	Predicted	%_Correct	
Нарру	266	176	66.16541353	269	204	75.83643123	8 269	195	5 72.49070632	Und
Neutral	280	421	150.3571429	280	433	154.6428571	280	400) 142.8571429	
Sad	261									Und

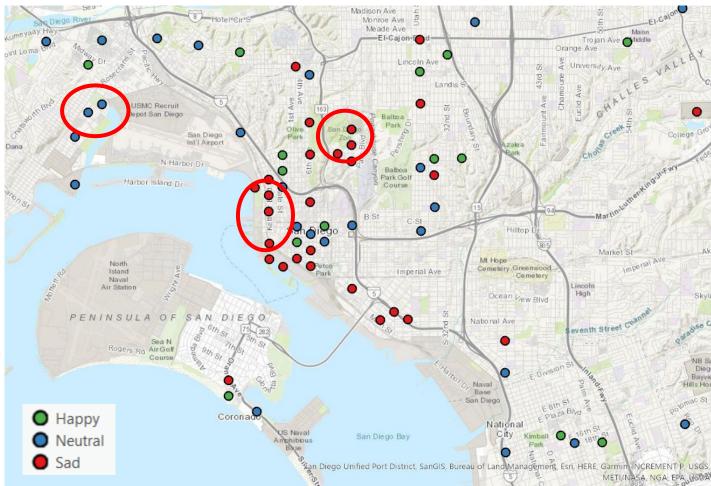
• Forest-based Classification and Regression - Results

Model 1 Variables	Importance	Model 2 Variables	Importance	Model 3 Variables	Importance
Unemployment	21%	Unemployment	36%	Poverty	34%
Poverty	18%	Poverty	29%	Asthma	35%
Linguistic Isolation	17%	Housing Burden	35%	Cardiovascular Disease	31%
Housing Burden	22%				
Educational Attainment	21%				

• Forest-based Classification and Regression - Model 1 Actual



• Forest-based Classification and Regression - Model 1 Predicted



Live Demo

- Demonstration using ArcGIS Insights
- Demonstration using ArcGIS Pro