Locational Big Data and Analytics: Implications for the Sharing Economy
AMCIS 2017 SIGGIS Workshop

Brian N. Hilton, Ph.D.
Associate Professor
Director, Advanced GIS Lab
Center for Information Systems and Technology
Claremont Graduate University
Claremont, CA
30 Miles
Agenda

• Review of Three Research Projects / Use Cases
 • Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement
 • Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement
 • Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

• Hands-On Demonstration (Sharing Economy Examples)
 • Insights for ArcGIS
Agenda

• Locational Big Data and Analytics has created a need for the efficient manipulation and scalable analysis of spatial big data on disparate, and distributed, datasets. As a result, this has opened a number of research areas such as:
 • Developing capabilities for accessing, formatting, and combining spatial big data in ways that enable it to be easily consumed;
 • Developing methodologies to derive insight into spatial big data for inferential understanding and decision making;
 • Developing teaching resources to better understand the use of data manipulation techniques, spatial statistics, and spatial data-mining tasks related to spatial big data; and
 • Developing novel spatial and spatiotemporal methods that can take advantage of newly emerging data-intensive computational resources.
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Domain – Energy Informatics

• Research Question – “Where are the optimal locations for the placement of Distributed Energy Resources, specifically, lithium-ion (Li-ion) batteries on the electricity grid?”
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Deploying **Distributed Energy Resources** in a widespread, efficient, and cost-effective manner requires complex integration with the existing electricity grid.

• The global scale-up of lithium-ion (Li-ion) **batteries** is enabling cost-effective energy storage systems for electric utility use.

• Policy incentives have increased **solar panel adoption** (grid-connected photovoltaic energy (PV) systems) – **California ranks first** among all states in number of solar PV systems installed.

• Research can identify and resolve the challenges of PV system integration, facilitating the transition to a smarter grid.
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Research steps:

1. Understanding Solar Panel Adoption across three main customer types: Residential, Commercial, and Industrial.

2. Development of GIS-based planning algorithm(s) for the optimal placement of new DERs (Li-ion batteries) given the spatial constraints of the existing electricity grid.
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Data Provider

• “The LA County GIS Data Portal is the place to search for GIS data created, maintained, licensed, and stored by the County of Los Angeles.”
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

- Solar Installation Data Description
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Solar PV Potential Data Description
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

- Solar Installation and Solar PV Potential Data
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Research Step (1)

• Creating a Predictive Model for Residential Solar Panel Adoption
 • Los Angeles County: Residential Parcels = 1,868,519 out of 2,392,100 (78%)

 • Dependent variable:
 Likelihood of a household adopting solar energy panels

 • Independent variables:
 (1) parcel information, such as: parcel age, parcel value, etc.
 (2) customer demographics, such as: household income, household size, etc.
 (3) expenditure data, such as: electricity usage, mortgage value, etc.
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Research Step (1)

• The results of the Two-Class Logistic Regression (Azure Machine Learning) indicated that six factors emerged as significant predictors of solar adoption:

 • parcel age,
 • average household size,
 • total area suitable for solar roof top,
 • total building area square feet,
 • average household income, and
 • average home value
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

• Future Work / Analysis
 • Research Step (2)
 • Development of GIS-based planning algorithm(s) for the optimal placement of new DERs
 • Data Provider
 • “The Electric Power Research Institute, or EPRI, conducts research on issues related to the electric power industry.”

• Devise a methodology for organizing our disparate datasets...
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement
Optimization Algorithm for Spatially Constrained Distributed Energy Resource Placement

Developing capabilities for accessing, formatting, and combining spatial big data in ways that enable it to be easily consumed.

- ArcGIS GeoAnalytics Server
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

- Domain – Logistics / Freight Network Planning

- Research Question – “How can we better understand commodity flows for economic development, for freight policy analysis, and transportation infrastructure impacts?”
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

• In Minnesota, technological and economic shifts in the grain supply chain have altered the way grain producers and sellers navigate their local freight network.

• In particular, many producers have been increasing their personal trucking capacity and taking longer trips to intermodal and domestic market options.

• This logistical reshaping of local grain supply chains pressure transportation officials to reconsider the consequences for road infrastructure and congested freight corridors.
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

• Data Provider
 • Quetica, a Minnesota-based, supply chain management company that uses commodity flow analysis to optimize freight network planning.
• Freight Data Description
 • The Quetica sample dataset included cereal grain shipments, via truck, including shipment weight, for Midwest U.S. counties in 2014:
 • 257,006 - Midwest U.S. shipments - total tons 764,848,291
 • 15,920 - MN-related (internal/external) shipments - total tons 79,638,868
 • 4,489 - MN-only shipments (internal/internal) - total tons 66,789,589
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

- Network Data Description
 - \((87 \text{ MN counties}) \times (87 \text{ MN counties}) = 7,569\) total O-D routes
 - Appended shipment data to these O-D routes \((4,489\) routes\)
 - Merged these O-D routes into one "flattened" dataset
 - Joined the merged O-D routes with 30,389 MN road segments
 - Resultant layer contains 30,389 road segments containing road usage and shipment weight totals
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Origins, Destinations, and O-D Routes

Origins (All MN Counties)
Destinations (All MN Counties)
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Road Usage

Origins (All MN Counties)
Destinations (All MN Counties)
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Shipping Weight

Origins (All MN Counties) Destinations (All MN Counties)
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Road Usage (Hot Spots)

Origins (All MN Counties)
Destinations (All MN Counties)
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Shipping Weight (Hot Spots)

Origins (All MN Counties)
Destinations (All MN Counties)
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

• Future Work / Analysis

 • Additional Industry Clusters (e.g., Agricultural Products, Animal Products, Mining Products, etc.) and Commodity Shipment Types (e.g., Processed Food Products, Dimension Stone, etc.)

 • More granular unit of analysis (1,031 MN zip codes) * (1,031 MN zip codes) = 1,062,961 total O-D routes

• Devise streamlined, and faster, data processing workflows...
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

• Issue / Need

Run analytics:

• against data that is too big for a single desktop machine
 - hundreds of millions of 911 calls accumulated over years
 - billions of observations of ship movements ingested through GeoEvent

• designed to gain insight into both spatial and temporal patterns

• against massive collections in a scalable manner

• and meet time constraints
Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota Cereal Grain Movement

Developing novel spatial and spatiotemporal methods that can take advantage of newly emerging data-intensive computational resources.

- ArcGIS Enterprise
- XSEDE and GIS (http://www.gisandbox.org)
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

• Domain – Spatial Justice / Spatial Equality

• Research Question – “Does the race or ethnicity of an individual being stopped by a police officer have a significant role in an individual being frisked and by how much?”
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- Policy encourages police officers to stop people they deem suspicious, question them, and to frisk them for drugs, contraband, or weapons if illegal activities are suspected.
 - Reasonable suspicion is the belief that someone poses a dangers, has committed a crime, or is about to commit a crime.
- Race cannot be a factor for the frisk.
- The New York City Stop-and-Frisk Policy is an example of how a policy intended to keep the public safe, now has a negative public perspective.
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

• Data Provider
 • Stop-and-Frisk data records are available from the NYPD Stop, Question, and Frisk database.
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- Stop-and-Frisk Data Description
 - 5,162,445 New York City police stops and street interrogations (2002-2016)
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- Asian
- Stop-and-Frisk
- 2014

Emerging Hot Spot Analysis Spatiotemporal Trends
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

• Black
• Stop-and-Frisk
• 2014

Emerging Hot Spot Analysis Spatiotemporal Trends
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- Black Hispanic
- Stop-and-Frisk
- 2014

Emerging Hot Spot Analysis Spatiotemporal Trends
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- White Hispanic
- Stop-and-Frisk
- 2014

Emerging Hot Spot Analysis
Spatiotemporal Trends
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- White
- Stop-and-Frisk
- 2014

Emerging Hot Spot Analysis Spatiotemporal Trends
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- Black
- Stop-and-Frisk
- 2014
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

• Future Work / Analysis

 • Conduct multiple, spatiotemporal analyses (e.g., across years, specific months, days, hours, specific attribute types, and combinations of these) for NYC.

 • Examine this issue in other cities (e.g., Philadelphia, Chicago, Los Angeles)

• Devise streamlined, shareable, analytic processing workflows...
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

- **Issue / Need**
 - Web-based, data analytics and exploration tool for conducting multiple, spatiotemporal analyses, of spatial and non-spatial data, where you can:

<table>
<thead>
<tr>
<th>Explore, Analyze, Iterate</th>
<th>Visualization and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag-and-Drop Visualization</td>
<td>Add Demographic Data</td>
</tr>
<tr>
<td>Guided Workflows</td>
<td>Share and Communicate</td>
</tr>
<tr>
<td>Connect to Data Sources</td>
<td>Record and Rerun Workflows</td>
</tr>
</tbody>
</table>
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

Developing methodologies to derive insight into spatial big data for inferential understanding and decision making.

- ArcGIS Pro
- Emerging Hot Spot Analysis
- Space-Time Cube
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

Developing methodologies to derive insight into spatial big data for inferential understanding and decision making.

• Insights for ArcGIS
• Web-based
• Data analytics tool
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective
Stop-and-Frisk Policy from a Quantitative and Spatial Perspective
Insights for ArcGIS - Hands-on demo

http://agislab.org
Insights for ArcGIS - Hands-on demo
Appendix
Insights for ArcGIS - Hands-on demo

Card 1: Map of Airbnb Boston

Card 2: Bar chart showing the number of listings by room type:
- Entire home/apt: 139
- Private room:
- Shared room:

Card 3: Heat map of Airbnb listings in Boston
Additional Resources

Developing teaching resources to better understand the use of data manipulation techniques, spatial statistics, and spatial data-mining tasks related to spatial big data.

- Jupyter Notebooks
 - https://developers.arcgis.com/python/
 - https://developers.arcgis.com/python/sample-notebooks/
 - https://notebooks.esri.com/user/VFVGul1U7slf/notebooks/samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
- MapD: https://www.mapd.com/